Selasa, 24 November 2020

SOAL PERTIDAKSAMAAN LOGARITMA DAN SIFAT-SIFATNYA

 1.  5log 3x + 5 < 5log 35

Pembahasan :

Syarat nilai bilangan pada logaritma 3x + 5 > 0 atau x > -5/3 ..... (1)

3x + 5 < 35

      3x < 30

        x < 10  ....(2)

Jadi dari (1) dan (2) diperoleh penyelesaian -5/3 < x < 10.

2.  3log (2x + 3) > 3log 15

Pembahasan :

Syarat nilai bilangan pada logaritma 2x + 3 > 0 atau x > -3/2 ..... (1)

Perbandingan nilai pada logaritma

2x + 3 > 15

      2x > 12

        x > 6  ....(2)

Jadi, dari (1) dan (2) diperoleh penyelesaian x > 6.

3.  2log (6x + 2) < 2log (x + 27)

Pembahasan :

Syarat nilai bilangan pada logaritma:

6x + 2 > 0, maka x > -1/3 .... (1)

x + 27 > 0, maka x > -27 ..... (2)

Perbandingan nilai pada logaritma

6x + 2 < x + 27

 6x – x < 27 – 2

      5x < 25

        x < 5   ..... (3)

Jadi, dari (1), (2),dan (3) diperoleh penyelesaian -1/3 < x < 5

4.  2log (5x – 16) < 6

Pembahasan :

Syarat nilai bilangan pada logaritma:

5x – 16 > 0, maka x > 16/5 .... (1)

Perbandingan nilai pada logaritma

2log (5x – 16) < 2log 26

2log (5x – 16) < 2log 64

         5x – 16 <  64

                5x < 80

                  x < 16 . . . . (2)

Jadi, dari (1) dan (2) diperoleh penyelesaian 16/5 < x < 16.

5.  4log (2x² + 24) > 4log (x² + 10x)

Pembahasan :

Syarat nilai pada logaritma.

2x² + 24 > 0 (definit positif). Jadi, berlaku untuk setiap x  . . . (1)

x² + 10x > 0, maka x < -10  atau x > 0 . . . . (2)

Perbandingan nilai pada logaritma

(2x² + 24) >  (x² + 10x)

2x² - x² - 10x + 24 > 0

        x² - 10x + 24 > 0

        (x – 4)(x – 6) >0

       x < 4 atau x > 6 ....(3)

Jadi, dari (1), (2), dan (3) diperoleh penyelesaian x < -10 atau x > 6.

6.  ^(x + 1)log (2x – 3) < ^(x + 1)log (x + 5)

Pembahasan :

Syarat nilai pada bilangan x + 1>0  

Batas ini dibagi menjadi 2,yaitu 0 < x + 1 < 1 dan x + 1 > 1, sehingga diperoleh batas - batas berikut.

Untuk  0<x+1<1 atau -1 < x <0. . . (1) 

Syarat nilai pada logaritma.

2x – 3 > 0, maka x > 3/2       . . . (2)

x + 5 > 0, maka x > -5        . . . (3)

Perbandingan nilai pada logaritma

(2x – 3) >  (x + 5)

  2x - x > 5 + 3

          x >  8 ...(4)

Dari pertidaksamaan (1), (2), (3) dam (4), tidak ada irisan penyelesaian.

Untuk  x + 1 > 1 atau x > 0 . . . (1) 

Syarat nilai pada logaritma.

2x – 3 > 0, maka x>3/2 . . . (2)

x + 5 > 0, maka x > -5  . . . (3)

Perbandingan nilai pada logaritma

(2x – 3) <  (x + 5)

   2x - x < 5 + 3

          x <  8 ...(4)

Dari pertidaksamaan (1), (2), (3) dan (4), ada irisan penyelesaian yaitu 3/2 < x < 8.

Jadi, penyelesaiannya adalah 3/2 < x < 8.

7.  ^(2x - 5)log (x² + 5x) > ^(2x - 5)log (4x + 12)

Pembahasan :

Syarat nilai pada bilangan 2x - 5 > 0  

Batas ini dibagi menjadi 2, yaitu 0 < 2x - 5 < 1 dan 2x - 5 > 1, sehingga diperoleh batas - batas berikut.

Untuk  0< 2x - 5 < 1 atau 5/2 < x < 3. . . (1) 

Syarat nilai pada logaritma.

x2 + 5x > 0, maka x < -5 atau x > 0 . . . (2)

4x + 12 > 0, maka x > -3  . . . (3)

Perbandingan nilai pada logaritma

(x² + 5x) < (4x + 12)

x² + 5x - 4x - 12 < 0

        x² + x - 12 < 0

    (x + 4)(x - 3) < 0 

       -4 < x < 3   . . . . . (4)

Dari pertidaksamaan (1), (2), (3) dan (4), ada irisan penyelesaian yaitu 5/2 < x < 3.

Untuk  2x - 5 > 1 atau  x > 3       . . . (1) 

Syarat nilai pada logaritma.

x² + 5x > 0, maka x < -5 atau x > 0       . . . (2)

4x - 12 > 0, maka x > 3            . . . (3)

Perbandingan nilai pada logaritma

(x² + 5x) > (4x + 12)

x² + 5x - 4x - 12 > 0

         x² + x - 12 > 0

(x + 4)(x - 3) > 0 

x < -4 atau  x > 3        . . . . . (4)

Dari pertidaksamaan (1), (2), (3) dan (4), ada irisan penyelesaian yaitu x > 3.

Jika, kedua penyelesaian digabungkan maka diperoleh penyelesaian x > 5/2 dan x < 3.


Selasa, 17 November 2020

PERTIDAKSAMAAN LOGARITMA DAN SIFAT-SIFATNYA

 

Pertidaksamaan Logaritma

Pertidaksamaan juga bisa dioperasikan pada logaritma. Pada petidaksamaan logaritma, berlaku beberapa teorema yaitu:

Saat a > 1

  • Jika ^a\log f(x) < ^a \log g(x), maka 0 < f(x) < g(x)
  • Jika ^a\log f(x) > ^a\log g(x), maka f(x) > ;g(x) > 0

Saat 0 < a < 1

  • Jika ^a\log f(x) < ^a\log g(x), maka f(x) > g(x) > 0
  • Jika ^a\log f(x) > ^a\log g(x), maka 0 < f(x) < g(x)

Sebagai contoh, menentukan nilai x yang memenuhi pertidaksamaan:

^2\log(2x + 1) < ^2\log 3

Berubah bentuk menjadi:

2x + 1

2x < 2

x < 1

Dari pertidaksamaan tersebut diketahui bahwa a = 2, berarti a > 1. Berlaku syarat: Jika ^a\log f(x) < ^a\log g(x), maka 0 < f(x) < g(x). Sehingga:

0 < (2x+1) < 3

-1 < (2x) < 2

-\frac{1}{2} < x < 1

Garis bilangannya adalah:

contoh soal persamaan dan pertidaksamaan logaritma

Sama halnya dengan persamaan logaritma, pertidaksamaan logaritma sering kali dilakukan permisalan y = ^a \log x. Permisalan ini untuk menyederhanakan dan mempermudah penyelesaiaan pertidaksamaan. Sebagai contoh penyelesaian dari:

(2 \log x-1)(\frac{1}{^x\log 10}) > 1

Diubah menjadi:

(2 \log x - 1)(\log x) > 1

2 \log^2 x - \log x - 1 > 0

Dimisalkan y = log x, maka pertidaksamaan menjadi:

2y^2 - y - 1 > 0

(2y + 1)(y - 1)

Akar-akarnya adalah :

y_1 = -\frac{1}{2} dan y_2 = 1

Maka nilai x adalah:

y_1 = -\frac{1}{2}\overset{maka}{\rightarrow}-\frac{1}{2} = \log x

x_1 = 10^{-\frac{1}{2}} = \frac{1}{\sqrt{10}}

y_2 = 1\overset{maka}{\rightarrow}1 = \log x

x_2 = 10

Berlaku syarat x > 0, dan x ≠ 1, maka garis bilangannya adalah:

pertidaksamaan logaritma

Penyelesaiannya adalah:

0 < x < \frac{1}{\sqrt{10}} atau x > 10

Pertidaksamaan Harga Mutlak Logaritma

Operasi logaritma bisa dilakukan dalam sebuah harga mutlak. Penyelesaiannya mengikuti sifat-sifat harga mutlak dan logaritma. Harga mutlak tersebut memiliki sifat-sifat:

  • Jika \mid x \mid < a dengan a > 0, maka -a < x < a
  • Jika \mid x \mid > a dengan a > 0, maka x < -a atau x > a

Penyelesaian pertidaksamaan logaritma dalam harga mutlak ini dapat dikerjakan seperti contoh:

\mid ^3\log (x+1)\mid < 2

Berdasarkan sifat \bar x \bar < a, maka:

-2 < ^3\log(x+1) < 2

^3\log(\frac{1}{9}) < ^3\log(x+1) < ^3\log(x+1) < ^3\log 9

\frac{1}{9} < x + 1 < 9

-\frac{8}{9} < x < 8

Sumber : https://www.google.com/search?q=PERTIDAKSAMAAN+LOGARITMA+DAN+SIFAT-SIFATNYA&oq=PERTIDAKSAMAAN+LOGARITMA+DAN+SIFAT-SIFATNYA&aqs=chrome..69i57j69i61l2.977j0j7&sourceid=chrome&ie=UTF-8#

PENILAIAN AKHIR SEMESTER GENAP

QUESTIONS 1  1. a=i-8j+5k b=3i+8j+2k C=-2i-4j+3k A+2b-3c = (1,-8, 5) + 2 (3,8,2) - 3 (-2,-4,3)                = (1,-8,5) + (6,16,4) - (-6,-1...