1. f (x) = k . 25x - 8
f (x) = k . 25 (2) - 8
20 = 50 k - 8
28 = 50k
k = 28/50
-3k = -3 . 28/50 = -84/50
2. y - 3/2-3 = x - 1/ 0-1
y - 3 / -1 = x - 1 / -1
-1 (y-3) = -1 (x-1)
-y + 3 = -x + 1
-y = -x - 2
y = x + 2
3. √8x²-4x+3 = 1/32^x-1
8 x²-4x+3/2 = 32^-x-1
3x²-12x+9/2 = -5x + 5
3x²-12x+19 = -10x + 10
3x² - 2x + 9 = 0
(3x -3/3) (3x + 1) = 0
(x-1) (3x+1) = 0
x = 1 atau x = -1/3
p+6q1+6 (-1/3)1 - 2 = -1
4. (2x-1)^8 = (-2 +x)^8
~ 2x - 1 = 0
x = 1/2
~ -2 + x = 0
x = 2
5. (2/3)^x = 6^1-x
log 2/3^x = log 6^1-x
x log2/3 = (1-x) log6
x log2/3 = log b - x log b
x log2/3 + x logb = log b
x (log 2/3 + log b) = log b
x = log b / log 2/3 + log 6
x = 1/1+log 1/9
6. (2x - 3)^x² - x = (2x -3)^x+4
f(x) = g(x)
x² - 2x = x + 4
x² - 3x - 4 = 0
(x - 4) (x + 1) = 0
x = 4 x = -1
✓ 2x - 3 = 0
2x = 3
x = 3/2
✓ 2x - 3 = -1
2x = 2
x = 1
✓ 2x - 3 = 1
2x = 4
x = 2
Hp : { -1, 1, 2, 3/2, 4 }
7. (2x - 3)^x+1 = 1
(2x - 3)^x+1 = (2x - 3)^0
• x + 1 = 0
x = 1
• 2x - 3 = 0
x = 3/2
• 2x - 3 = 1
x = 2
• 2x - 3 = -1
x = 1
✓ x1+x2+x3 = -1 + 3/2 + 2 + 1 + 3/2
= 2+3/2
= 5/2
8. 2^2x-6 × 2^+1 + 32
(2^x)² - 6 × 2^x × 2 + 32 = 0
p² - 12p + 32 = 0
(p - 8) (p - 4) = 0
p = 8 p = 4
~ p-8 → 2^x = 8
2^x = 2³
x = 3
~ p = 4 → 2^x = 4
2^x = 2²
x = 2
X1 > X2
2 > 3
2x1 + x2
2(3) + 3 = 8
9. 3^2x+1 × 28 × 3^x + 9 = 0
(3^x)² × 3 - 28 × 3^x - 9 = 0
p² - 28p + 9 = 0
(3p - 27/3) (p-1)
(p = 9) (p = 1/3)
✓ p = 9 → 3^x = 9
3^x = 3³
x = 3
✓ p = 1/3 → 3^x = 1/3
3^x = 3^-1
x = -1
3 X1 - X2
3 (3) - (-1) = 7
10. (5^x)² × 5 - 26 × 5^x+5 = 0
5p² - 26p + 5 = 0
(5p - 25/5) (5p - 1) = 0
(p - 5) (5p - 1) = 0
p = 5 p = 1/5
• p = 5 → 5^x = 5¹
x = 1
• p = 1/2 → 5^x = 5^-1
x = -1
✓ X1 + X2 = 1 + (-1) = 0
11. 5^x²-2x-4 > 5^3x+2
x² - 2x - 4 > 3x + 2
x² - 5x - 6 > 0
(x - 6) (x+1) > 0
x = 6 x = -1
HP : {x < -1 atau x > 6}
12. (1/2)^2x-5 < (1/4)^½x + 1
(1/2)^2x-5 < (1/2)^2 (1/2 x + 1)
2x - 5 < x + 2
x < 7
Hp : { x | x < 7 }
13. Xo = 1.000.000 jiwa → tahun 2000
✓ tahun 2001 = 1.040.000jiwa
✓ tahun 2002 = 1.081.600 jiwa
✓ tahun 2003 = 1.124.864 jiwa
14. Xo = 0,5 kg → pukul 08.00
✓ pukul 09.00 = 0,49 kg
✓ pukul 10.00 = 0,4802 kg
15. 5^x+2 < 4^x
log5^x+2 < log4^x
(x+2) log5 < x (log4)
xlog5 + 2log5 < xlog4
xlog5 - xlog4 < -2 log5
x (log5 - log4) < -2log5
Hp = {x < -2log5 /log5-log4}
16. (x-4)^4x < (x-4)^1+3x
• 4x < 1+3x
x < 1
• x-4 < 0
x < 4
Hp = {x < 1 atau x < 4}
17. 2x3-x < 1
2x-3x < 20
X3-x < 0
X ( x2-x) < 0
X ( x+1) (x-1) < 0
Hp = { x < -1 atau 0 < x < 1}
18. 52x+1 > 5x+4
52x.51 > 5x-4 > 0
(5x)2.5 – (5x)-4 > 0
5a2-a-4> 0
(5a+4) (a-1)
5a = -4 a= 1
A = -4/5 5x = 1
5x = 4/5 5x = 50 x = 0
Hp = {x > 0}
19. 2x-21-x-1/1-2x ≤ 0
Misal x =2
22-21-2-1/1-22 = 4-1/2-1/1-4 =
2x-21-x = 0
x = 1
1-2x = 0
X = 0
Hp ={x < 0 atau x > 1}
20. 42x+1 > 4x+3
4a2-a-3 > 0
(4a+3) (a-1) > 0
a = -3/4
4x = 3/4
a = 1
4x = 1
Hp = { X > 0 }
21. 3x-2y = 3-4 dan 2x-y = 16
2x-y = 24
x-2y = -4
x-y = 4
-y = -8
Y = 8
x-8 = 4
x = 12
x + y = 12 + 8 = 20
22. (2a5b-5/32a9.b-1)-1
(1/16a4 b 4)-1
16a4.b4
24.a4 b4
(2ab)^4
23. 9^3x-4 = 81^1/2x-5x
3x-4 = -4x + 10
3x + 4x = 10 +4
7x = 14
X = 2
24. 4^1+2x . 3^4x+1 < 432
4.42x.34x.3 < 432
12.42x34x < 432
42x.34x < 36
24x . 34x < 36
(2.3)4x < 36
64x < 62
4x < 2
X < 1/2
25. (1/3)^x+2 < (1/3)^x
x + 2 < x
0 < 2 (TIDAK MEMENUHI)
(1/3)^x+2 < (1/3)^-x
x +2 < -x
2x < -2
x < -1
26. x = 0
27. Dari kelima fungsi yang diberikan pada opsi, hanya opsi E yang menunjukkan fungsi logaritma dengan 0 < a < 1
28. f(x) = x² -2x + 9
X = -b / sa
2/2 = 1
x= 1 ⇒ ^2 log ( 1^2 -2.1 + 9 )
^2 log 8
^2 log 2^3 = 3
29. x(log2) - y(log3) + z(log5) = 10
log2ˣ + log5^z= log10¹⁰ + log3^y
log 2ˣ .5^z = log10¹⁰. 3^y
2ˣ . 5^z = 10¹⁰. 3^y
2ˣ . 5^z . 3^0= 2^10. 5^10. 3^y
x = 10
y = 0
z = 10
maka :
2x + 8y - 3z = 2(10) + 8(0) - 3(10)
= 20 + 0 - 30
= -10
30. ²logx² + ³logy⁻³ = 4
2²logx - 3³logy = 4
misal ²logx=p, ³logy=q
maka, 2p-3q=4.... (1)
²logx + ³logy⁴ =13
⇒ ²logx + 4³logy=13
⇒ p+4q=13...(2)
subtitusikan pers.1 &2
2p - 3q =4
2p + 8q = 26
diperoleh
p = 5 ⇒ ²logx = 5
q = 2 ⇒ ³logy = 2
⁴logx - log9 =
31. ᵃlog b = n → b = aⁿ
²log (4ˣ + 6) = 3 + x
4ˣ + 6 = 2³⁺ˣˣ₁
4ˣ + 6 = 2³. 2ˣ
(2ˣ)² - 8 (2ˣ) + 6 = 0
misal 2ˣ= a
a² - 8a + 6 = 0,
akar akarnya a1 dan a2
a1. a2 = 6
2ˣ₁. 2ˣ₂ = 6
2⁽ˣ₁⁺ˣ₂) = 6
x₁ + x₂ = ²log 6
32 . xlog x^2 = 2
xlog (4x + 12) = xlog x^2
berarti
4x + 12 = x^2
x^2 - 4x - 12 = 0
x = 6 atau -2
33. √²Log (x²-5x+8) = ² Log 2
x²-5x+8 = 2
x²-5x+8-2 = 0
x²-5x + 6 = 0
(x-3) (x-2) = 0
x= 3 atau x = 2
34. ² Log 48 . ² Log 3 + 5 Log 50 - 5 log 2
= ² Log 48 / 3 . 5 log 50/2
² Log 16 . 5 log 25
² Log 2^4. 5 log 2^2
4 . 2 = 8
35. 2log5^3 - 2log3^2
3x2,3 - 2x1,6
6,9 - 3,2 = 3,7
37. ²Log² x - 3.²log x - 10 = 0
Misal ²log x = a
a² - 3a - 10 = 0
(a - 5)(a + 2) = 0
a - 5 = 0 atau a + 2 = 0
a = 5 a = -2
²log x = a
²log x = 5
x = 2⁵
= 32
²log x = a
²log x = -2
x = 2⁻²
x₁.x₂ = 32 .
= 8
38. misalkan y = log x
maka bentuk persamaan menjadi
y² - 4y + 3 = 0
(y - 1) (y - 3) = 0
y = 1 atau y = 3
y = 1
log x = 1
x = 10
y = 3
log x = 3
x = 10³
x = 1000
HP : {10 , 1000}
39. 5 log 3x+5 < 5 log35
3x + 5 < 35
3x < 35 - 5
3x < 30
x < 30/3
x < 10
40. ²log (5x - 16) < 6
²log (5x - 16) < 2^6
5x - 6 < 64
5x < 70
x < 14
41. 4log (2x2 + 24) > 4log (x2 + 10x)
Syarat nilai pada logaritma.
2x2 + 24 > 0 (definit positif). Jadi, berlaku untuk setiap x . . . (1)
x2 + 10x > 0, maka x < -10 atau x > 0 . . . . (2)
Perbandingan nilai pada logaritma
(2x2 + 24) > (x2 + 10x)
2x2 - x2 - 10x + 24 > 0
x2 - 10x + 24 > 0
(x – 4)(x – 6) >
x < 4 atau x > 6 ....(3)
Jadi, dari (1), (2), dan (3) diperoleh penyelesaian x < -10 atau x > 6.
42. 1/2 log x^2 - 1/2 log (x+3) > -4
1/2 log x^2 / x+3 < 1/2 log 1/2 ^ -4
x^2 / x+3 < 2^4
x^2 < 16 ( x +3 )
x^2 - 16x - 48 > 0
- x2 / x+ 3 > 0
x > 0
Hp = { 0<x<4 / x> 12}
43. 1/2 log ^ x+3 > 1/2 log ^2x+1
- x+3 < 2x +1
x > 2
- x + 3 > 0
- 2x + 1 > 0
x > -1/2
Hp = { x > 2 }
44. 7 log x+6 > 5 log x+6
x+6 > 1
Hp = { x > -5}
45. 2x - ⁵log (x² + 5x) > 2x - ⁵log (4x + 12)
0 > 2x - 2x + ⁵log (x² + 5x) - ⁵log (4x + 12)
⁵log ((x² + 5x)/(4x + 12)) < 0
(x² + 5x)/(4x + 12) < 5⁰
(x² + 5x)/(4x + 12) - 1 < 0
(x² + 5x - 4x - 12)/(4x + 12) < 0
(x² + x - 12) / (4 (x + 3)) < 0
(x + 4) (x - 3) (x + 3) < 0
x + 4 = 0
x = -4
x + 3 = 0
x = -3
x - 3 = 0
x = 3
x < -4 atau -3 < x < 3
syarat
4x + 12 > 0
4x > -12
x > -3
x² + 5x > 0
x (x + 5) > 0
x < -5 atau x > 0
HP = { x | 0 < x < 3, x ∈ bilangan real }