Selasa, 22 September 2020

LOGARITMA DAN SIFAT-SIFATNYA

 Sifat logaritma merupakan sifat-sifat khusus yang dimiliki oleh logaritma. Logaritma sendiri digunakan untuk menghitung pangkat berapakah sebuah bilangan agar hasilnya sesuai.

Logaritma adalah operasi hasil kebalikan dari sebuah perpangkatan.

Logaritma umumnya digunakan ilmuwan untuk mencari nilai orde frekuensi gelombang, mencari nilai pH atau tingkat keasaman, menentukan konstanta peluruhan radioaktif dan masih banyak lagi.

Rumus Dasar Logaritma

Rumus dasar logaritma digunakan untuk mempermudah kita menyelesaikan masalah terkait logaritma. Contohnya perpangkatan ab=c, maka untuk menghitung nilai c kita dapat menggunakan logaritma seperi di bawah ini:

c = alog b = loga(b)

  • a adalah basis atau bilangan pokok logaritma
  • b adalah numerus atau bilangan yang dicari logaritma
  • c adalah hasil operasi logaritma
    Operasi logaritma di atas berlaku untuk nilai a > 0.

Pada umumnya bilangan logaritma digunakan untuk menjabarkan perpangkatan 10 atau orde. Oleh karena itu, apabila operasi logaritma memiliki nilai basis 10 maka nilai basis pada operasi logaritma tidak perlu dituliskan dan menjadi log b = c.

Selain logaritma basis 10, terdapat bilangan istimewa lagi yang sering digunakan sebagai basis. Bilangan tersebut adalah bilangan euler atau bilangan natural.

Bilangan natural memiliki nilai 2,718281828. Logaritma dengan basis bilangan natural dapat dinamakan dengan operasi logaritma natural. Penulisan logaritma natural adalah sebagai berikut:

ln b = c


Sifat-sifat Logaritma

Operasi logaritma memiliki sifat apabila dikalikan, dibagi, ditambah, dikurang atau bahkan dipangkatkan. Sifat-sifat dari operasi logaritma tersebut dijelaskan oleh tabel di bawah ini :

sifat logaritma

1. Sifat Logaritma Dasar

Sifat dasar dari sebuah perpangkatan adalah apabila sebuah bilangan dipangkatkan dengan 1 maka hasilnya akan tetap sama dengan sebelumnya.

Sama halnya dengan logaritma, apabila sebuah logaritma memiliki basis dan numerus yang sama maka hasilnya adalah 1.

log a = 1

Selain itu, apabila suatu bilangan dipangkatkan dengan 0 maka hasilnya adalah 1. Untuk itulah apabila numerus logaritma bernilai 1 maka hasilnya adalah 0.

a log 1 = 0

2. Logaritma Koefisien

Apabila sebuah logaritma memiliki basis atau numerus yang berpangkat. Maka, pangkat dari basis atau numerus tersebut dapat menjadi koefisien dari logaritma itu sendiri.

Pangkat basis menjadi penyebut dan pangkat numerus menjadi pembilang.

( a^x ) log ( b^y ) = ( y / x ) . log b

Ketika basis dan numerus memiliki pangkat yang bernilai sama maka pangkat tersebut dapat dihilangkan karena koefisien logaritma bernilai 1.

(a^x)log(b^x) = (x/x) . log b = 1 . log b

Sehingga

(a^x) log (b^x) = log b

3. Logaritma Sebanding Terbalik

Sebuah logaritma dapat memiliki nilai yang sebanding dengan logaritma lain yang berbanding terbalik antara basis dan numerusnya.


a log b = 1 / ( b log a )

4. Sifat Perpangkatan Logaritma

Apabila sebuah bilangan dipangkatkan dengan logaritma yang memiliki basis yang sama dengan bilangan tersebut maka hasilnya akan berupa numerus dari logaritma itu sendiri.

a ^ ( log b ) = b

5. Sifat Penjumlahan dan Pengurangan Logaritma

Logaritma dapat dijumlahkan dengan logaritma lain yang memiliki basis yang sama. Hasil dari penjumlahan tersebut berupa logaritma dengan basis yang sama dan numerus yang dikalikan.

log x + a log y = a log ( x . y )

Selain penjumlahan, logaritma juga dapat dikurangkan dengan logaritma lain yang memiliki basis yang sama.

Namun, terdapat perbedaan pada hasilnya dimana hasilnya akan berupa pembagian antara numerus dari logaritma.

log x – a log y = a log ( x / y )

6. Sifat Perkalian dan Pembagian Logaritma

Operasi perkalian antara dua buah logaritma dapat disederhanakan apabila kedua logaritma tersebut memiliki basis atau numerus yang sama.

a log x . x log b = a log b


Sedangkan untuk pembagian logaritma dapat disederhanakan apabila kedua logaritma hanya memiliki basis yang sama.

x log b / x log a = a log b

7. Sifat Logaritma Numerus Terbalik

Sebuah logaritma dapat memiliki nilai yang sama dengan negatif logaritma lain yang memiliki numerus dengan pecahan terbalik.

a log ( x / y ) = – a log ( y / x )


Contoh Soal Logaritma

Sederhanakan logaritma berikut ini!

  1. log 25 . 5 log 4 + 2 log 6 – 2log 3
  2. 9 log 36 / 3 log 7
  3. 9^(3 log 7)

Jawab :

a. log 25 . 5 log 4 + 2 log 6 – 2log 3

log 52 . 5 log 22 + 2 log (3.2/3)
= 2.2 . log 5 . 5 log 2+ log 2
= 2 . 2 log 2 + 1
= 2 . 1 + 1
= 3

b. 9 log 4 / 3 log 7

3^2 log 22 / 3 log 7
3 log 2 / 3 log 7
7 log 2

c. 9^(3 log 7)

= 3^(3 log 7)
= 3^(2 .3 log 7)
= 3^(3 log 49)
= 49

Selasa, 15 September 2020

SOAL PERTIDAKSAMAAN EKSPONEN DAN SIFAT-SIFATNYA

 1. Jika x>0 dan x\ne 1 memenuhi \frac{x}{\sqrt[3]{x\sqrt[3]{x}}} = x^p, serta p bilangan rasional, maka p adalah

(SPMB 2002)

Pembahasan

Dilakukan penyederhanaan di dalam akar:

\frac{x}{\sqrt[3]{x\sqrt[3]{x}}} = \frac{x}{\sqrt[3]{x(x)^{\frac{1}{3}}}} = x^p

= \frac{x}{\sqrt[3]{(x)^{1+\frac{1}{3}}}} = \frac{x}{\sqrt[3]{(x)^{\frac{4}{3}}}}

Akar dirubah menjadi pangkat:

= \frac{x}{((x)^{\frac{4}{3}})^{\frac{1}{3}}} = \frac{x}{((x)^{\frac{4}{9}})}

Bentuk pecahan disederhanakan menjadi:

x(x)^{-\frac{4}{9}} = x^p

(x)^{1-\frac{4}{9}} = x^p

Maka

p = 1- \frac{4}{9} = \frac{5}{9}

2. Nilai x yang memenuhi pertidaksamaan eksponen 3^{-x^2+3x} \le 1 adalah:

Pembahasan

3^{-x^2 + 3x} \le 1

3^{-x^2 + 3x} \le 3^0

Sehingga,

-x^2 + 3x \le 0

x(-x + 3) \le 0

Diperoleh,

x_1 = 0 dan x_2 = 3

Untuk mendapat penyelesaiannya, ambil sembarang nilai x diantara rentang 0<x<3 kemudian disubstitusikan kedalam bentuk -x^2 + 3x \le 0. Misal ambil x = 1.

-(1)^2 + 3(1) \le 0

- 1 + 3 \le 0

2 \le 0 (tidak sesuai)

Karena tidak sesuai, maka area penyelesaian ada di luar rentang 0<x<3, sehingga didapat penyelesaiannya adalah

x\le 0 dan x\le 3

3. Akar-akar persamaan 5^{2x+3} - 6(5^{x+1}) + 1 = 0 adalah x_1 dan x_2.

Jika x_1 < x_2, maka tentukan nilai 2x_1 + x_2 

Pembahasan

5^{2x+3} - 6(5^{x+1}) + 1 = 0

5^{2(x+1)+1} - 6(5^{x+1}) + 1 = 0

5((5^{x+1})^2) - 6(5^{x+1}) + 1 = 0

Misalkan 5^{x+1} = y, maka

5(y^2) - 6(y) + 1 = 0

y_{1,2} = \frac{-b\pm\sqrt{b^2 - 4ac}}{2a}

y_{1,2} = \frac{-(-6)\pm \sqrt{(-6)^2 - 4(5)(1)}}{2(5)}

y_{1,2} = \frac{6 \pm 4}{10}

sehingga y_1 = \frac{1}{5} dan y2 = 1.

Disubstitusi dalam 5^{x+1} = y menjadi

5^{x+1} = \frac{1}{5} = 5^{-1}

x+1 = -1 \longrightarrow x_1 = -2

5^{x+1} = 1 = 5^0

x+1 = 0 \longrightarrow x_2 = -1

Sehingga,

2x_1 + x_2 = 2 (-2)+(-1) = -5

4.   Himpunan penyelesaian  , x ∊ R adalah ...

a.    {x∣-1<x<2}
b.    {x∣-2<x<1}
c.    {x∣x<-1 atau x>2}
d.    {x∣x<-2 atau x>1}
e.    {x∣x<0 atau x>1}
Pembahasan:


Misal:  maka:

     (2p – 1) (p – 4) > 0
     p = ½ dan p = 4
untuk p = ½, maka 
untuk p = 4, maka , x = 2

HP = {x∣x<-1 atau x>2}
 Jawaban: C



5.  Himpunan penyelesaian pertidaksamaan  adalah ...
a.    {p∣p< -2- √7  atau p> -2+ √7}
b.    {p∣p<1 atau p>3}
c.    {p∣ -2- √7< p< -2+ √7}
d.    {p∣ 1< p< 3}
e.    {p∣-3< p< -1}
Pembahasan:



      -√7 < p + 2 < √7
     -2 -√7 < p < -2 +  √7
Jawaban: C

6.    Nilai x yang memenuhi pertidaksamaan  adalah ...
a.    x ≥ -3/2
b.    x ≥ -1
c.    x ≥ 0
d.    x ≥ 1/2
e.    x ≥ 1
pembahasan:


     2x + 2 ≥ -2x – 2
     4x ≥ -4
     x ≥ -1
 jawaban: B


7. Himpunan penyelesaian dari 22x − 7 ∙ 2x > 8 adalah ….

A.   {xx < −1, x ∈ R}
B.   {xx < −2, x ∈ R}
C.   {xx > 3, x ∈ R}
D.   {xx > 4, x ∈ R}
E.   {xx > 8, x ∈ R}


Pembahasan

Misalkan p = 2x sehingga 22x = p2.

   22x − 7 ∙ 2x > 8
   p2 − 7p − 8 > 0
(p + 1)(p − 8) > 0

Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri −1 atau di sebelah kanan 8.

 p < −1    atau    p > 8
2x < −1    atau   2x > 8

Penyelesaian 2x < −1 tidak memenuhi karena hasil perpangkatan tidak mungkin negatif. Sehingga kita tinggal menyelesaikan 2x > 8.

2x > 8
2x > 23
  x > 3

Jadi, himpunan penyelesaian pertidaksamaan eksponen tersebut adalah opsi (C).

8. Nilai x yang memenuhi pertidaksamaan 32x+1 + 9 − 28 ∙ 3x > 0, x ∈ R adalah ….

A.   x > −1 atau x > 2
B.   x < −1 atau x < 2
C.   x < 1 atau x > 2
D.   x < −1 atau x > 2
E.   x > −1 atau x < −2

PembahasanLangkah pertama, kita pecah bilangan berpangkat 32x+1 menjadi 32x ∙ 31.

   32x+1 + 9 − 28 ∙ 3x > 0
32x ∙ 31 + 9 − 28 ∙ 3x > 0

Misalkan p = 3x kemudian kita urutkan sehingga menjadi:

 3p2 − 28p + 9 > 0
(3p − 1)(p − 9) > 0

Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri 1/3 atau di sebelah kanan 9.

 p < 1/3    atau    p > 9
3x < 3−1   atau   3x > 32
  x < −1    atau     x > 2

Jadi, nilai x yang memenuhi pertidaksamaan eksponen di atas adalah opsi (D).

9. Himpunan penyelesaian dari 9x − 54 > 3x+1 adalah ….

A.   {xx > 9, x ∈ R}
B.   {xx < −3, x ∈ R}
C.   {xx > 4, x ∈ R}
D.   {xx < −6, x ∈ R}
E.   {xx > 2, x ∈ R}

Pembahasan

Langkah pertama kita pindah ruas sehingga ruas kanan menjadi nol

9x − 3x+1 − 54 > 0

Selanjutnya pangkat dari 3 kita pecah dengan rumus am+n = am ∙ an.

9x − 3x . 31 − 54 > 0

Misalkan p = 3x sehingga 9x = p2.

 p2 − 3p − 54 > 0
(p + 6)(p − 9) > 0

Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri −6 atau di sebelah kanan 9.

 p < −6   atau    p > 9
3x < −6   atau   3x > 9

Penyelesaian 3x < −6 tidak memenuhi karena hasil perpangkatan tidak mungkin negatif. Sekarang kita lanjutkan untuk 3x > 9.

3x > 9
3x > 32
  x > 2

Jadi, himpunan penyelesaian yang memenuhi pertidaksamaan eksponen di atas adalah opsi (E).

10. Nilai x yang memenuhi pertidaksamaan 52x - 6.5x+1 + 125 > 0, x ∈ R adalah ...
A.   1 < x < 2
B.   5 < x < 25
C.   x < -1  atau  x > 2
D.   x < 1  atau  x > 2
E.   x < 5  atau  x > 25

Pembahasan :
52x  -  6.5x+1  +  125  >  0
(5x)2  -  6.5x.51  +  125  >  0
(5x)2  -  30(5x)  +  125  >  0

Misalkan y = 5x, pertidaksamaan diatas menjadi
y2 - 30y + 125 > 0

Pembuat nol :
y2 - 30y + 125 = 0
(y - 5)(y - 25) = 0
y = 5  atau  y = 25

Dengan uji garis bilangan diperoleh
y < 5  atau  y > 25

Karena y = 5x, maka penyelesaiannya menjadi
5x < 5  atau  5x > 25
5x < 51  atau  5x > 52
x < 1  atau  x > 2

Jawaban : D

11. Himpunan penyelesaian dari pertidaksamaan eksponen 92x4(127)x24 adalah ...
A.   {x / -2 ≤ x ≤ 10/3}
B.   {x / -10/3 ≤ x ≤ 2}
C.   {x / x ≤ -10/3  atau  x ≥ 2}
D.   {x / x ≤ -2  atau  x ≥ 10/3}
E.   {x / -10/3 ≤ x ≤ -2}

Pembahasan :
92x4(127)x24(32)2x4(33)x2432(2x4)33(x24)2(2x4)3(x24)4x83x2+123x2+4x200

Pembuat nol :
3x2 + 4x - 20 = 0
(3x + 10)(x - 2) = 0
x = -10/3  atau  x = 2

Dengan uji garis bilangan diperoleh
x ≤ -10/3  atau  x ≥ 2

Jawaban : C


12. Himpunan penyelesaian dari 32x - 6.3x < 27 adalah ...
A.   {x / x < -3, x ∈ R}
B.   {x / x < -2, x ∈ R}
C.   {x / x < 2, x ∈ R}
D.   {x / x > 2, x ∈ R}
E.   {x / x > 3, x ∈ R}

Pembahasan :

32x  -  6.3x  <  27
(3x)2  -  6(3x)  -  27  <  0

Misalkan y = 3x, pertidaksamaan diatas menjadi
y2 - 6y - 27 < 0

Pembuat nol :
y2 - 6y - 27 = 0
(y + 3)(y - 9) = 0
y = -3  atau y = 9

Dengan uji garis bilangan diperoleh
-3 < y < 9

atau dapat pula ditulis
y > -3  dan  y < 9

Karena y = 3x, maka
3x > -3  dan  3x < 9
3x > -3  dan  3x < 32
x ∈ R    dan  x < 2

Jadi, himpunan penyelesaiannya adalah
{x ∈ R  dan  x < 2} = {x < 2}

Jawaban : C



13. Penyelesaian dari 5-2x+2 + 74 . 5-x - 3 ≥ 0 adalah ...
A.   x ≤ -3  atau  x ≥ 1/25
B.   -3 ≤ x ≤ 1/25
C.   x ≤ 2
D.   x ≥ 2
E.   x ≥ -2

Pembahasan :

5-2x+2  +  74 . 5-x  -  3 ≥ 0
5-2x . 52  +  74 . 5-x  -  3 ≥ 0
25(5-x)2  +  74(5-x)  -  3  ≥  0

Misalkan y = 5-x, pertidaksamaan diatas menjadi
25y2 + 74y - 3 ≥ 0

Pembuat nol :
25y2 + 74y - 3 = 0
(y + 3)(25y - 1) = 0
y = -3  atau  y = 1/25

Dengan uji garis bilangan diperoleh :
y ≤ -3  atau y ≥ 1/25

Karena y = 5-x, maka
5-x ≤ -3  ⟶  tidak mempunyai penyelesaian
5-x ≥ 1/25  ⇔  5-x ≥ 5-2  ⇔  -x  ≥ -2  ⇔  x ≤ 2

Jadi, penyelesaiannya adalah x ≤ 2

Jawaban : C

PENILAIAN AKHIR SEMESTER GENAP

QUESTIONS 1  1. a=i-8j+5k b=3i+8j+2k C=-2i-4j+3k A+2b-3c = (1,-8, 5) + 2 (3,8,2) - 3 (-2,-4,3)                = (1,-8,5) + (6,16,4) - (-6,-1...