Selasa, 29 September 2020
Selasa, 22 September 2020
LOGARITMA DAN SIFAT-SIFATNYA
Sifat logaritma merupakan sifat-sifat khusus yang dimiliki oleh logaritma. Logaritma sendiri digunakan untuk menghitung pangkat berapakah sebuah bilangan agar hasilnya sesuai.
Logaritma adalah operasi hasil kebalikan dari sebuah perpangkatan.
Logaritma umumnya digunakan ilmuwan untuk mencari nilai orde frekuensi gelombang, mencari nilai pH atau tingkat keasaman, menentukan konstanta peluruhan radioaktif dan masih banyak lagi.
Rumus Dasar Logaritma
Rumus dasar logaritma digunakan untuk mempermudah kita menyelesaikan masalah terkait logaritma. Contohnya perpangkatan ab=c, maka untuk menghitung nilai c kita dapat menggunakan logaritma seperi di bawah ini:
c = alog b = loga(b)
- a adalah basis atau bilangan pokok logaritma
- b adalah numerus atau bilangan yang dicari logaritma
- c adalah hasil operasi logaritma
Operasi logaritma di atas berlaku untuk nilai a > 0.
Pada umumnya bilangan logaritma digunakan untuk menjabarkan perpangkatan 10 atau orde. Oleh karena itu, apabila operasi logaritma memiliki nilai basis 10 maka nilai basis pada operasi logaritma tidak perlu dituliskan dan menjadi log b = c.
Selain logaritma basis 10, terdapat bilangan istimewa lagi yang sering digunakan sebagai basis. Bilangan tersebut adalah bilangan euler atau bilangan natural.
Bilangan natural memiliki nilai 2,718281828. Logaritma dengan basis bilangan natural dapat dinamakan dengan operasi logaritma natural. Penulisan logaritma natural adalah sebagai berikut:
ln b = c
Sifat-sifat Logaritma
Operasi logaritma memiliki sifat apabila dikalikan, dibagi, ditambah, dikurang atau bahkan dipangkatkan. Sifat-sifat dari operasi logaritma tersebut dijelaskan oleh tabel di bawah ini :
1. Sifat Logaritma Dasar
Sifat dasar dari sebuah perpangkatan adalah apabila sebuah bilangan dipangkatkan dengan 1 maka hasilnya akan tetap sama dengan sebelumnya.
Sama halnya dengan logaritma, apabila sebuah logaritma memiliki basis dan numerus yang sama maka hasilnya adalah 1.
a log a = 1
Selain itu, apabila suatu bilangan dipangkatkan dengan 0 maka hasilnya adalah 1. Untuk itulah apabila numerus logaritma bernilai 1 maka hasilnya adalah 0.
a log 1 = 0
2. Logaritma Koefisien
Apabila sebuah logaritma memiliki basis atau numerus yang berpangkat. Maka, pangkat dari basis atau numerus tersebut dapat menjadi koefisien dari logaritma itu sendiri.
Pangkat basis menjadi penyebut dan pangkat numerus menjadi pembilang.
( a^x ) log ( b^y ) = ( y / x ) . a log b
Ketika basis dan numerus memiliki pangkat yang bernilai sama maka pangkat tersebut dapat dihilangkan karena koefisien logaritma bernilai 1.
(a^x)log(b^x) = (x/x) . a log b = 1 . a log b
Sehingga
(a^x) log (b^x) = a log b
3. Logaritma Sebanding Terbalik
Sebuah logaritma dapat memiliki nilai yang sebanding dengan logaritma lain yang berbanding terbalik antara basis dan numerusnya.
a log b = 1 / ( b log a )
4. Sifat Perpangkatan Logaritma
Apabila sebuah bilangan dipangkatkan dengan logaritma yang memiliki basis yang sama dengan bilangan tersebut maka hasilnya akan berupa numerus dari logaritma itu sendiri.
a ^ ( a log b ) = b
5. Sifat Penjumlahan dan Pengurangan Logaritma
Logaritma dapat dijumlahkan dengan logaritma lain yang memiliki basis yang sama. Hasil dari penjumlahan tersebut berupa logaritma dengan basis yang sama dan numerus yang dikalikan.
a log x + a log y = a log ( x . y )
Selain penjumlahan, logaritma juga dapat dikurangkan dengan logaritma lain yang memiliki basis yang sama.
Namun, terdapat perbedaan pada hasilnya dimana hasilnya akan berupa pembagian antara numerus dari logaritma.
a log x – a log y = a log ( x / y )
6. Sifat Perkalian dan Pembagian Logaritma
Operasi perkalian antara dua buah logaritma dapat disederhanakan apabila kedua logaritma tersebut memiliki basis atau numerus yang sama.
a log x . x log b = a log b
Sedangkan untuk pembagian logaritma dapat disederhanakan apabila kedua logaritma hanya memiliki basis yang sama.
x log b / x log a = a log b
7. Sifat Logaritma Numerus Terbalik
Sebuah logaritma dapat memiliki nilai yang sama dengan negatif logaritma lain yang memiliki numerus dengan pecahan terbalik.
a log ( x / y ) = – a log ( y / x )
Contoh Soal Logaritma
Sederhanakan logaritma berikut ini!
2
log 25 .
5
log 4 +
2
log 6 –
2
log 3
9
log 36 /
3
log 7
9^(
3
log 7)
Jawab :
a. 2
log 25 .
5
log 4 +
2
log 6 –
2
log 3
= 2 log 52 . 5 log 22 + 2 log (3.2/3)
= 2.2 . 2 log 5 . 5 log 2+ 2 log 2
= 2 . 2 log 2 + 1
= 2 . 1 + 1
= 3
b. 9
log 4 /
3
log 7
= 3^2 log 22 / 3 log 7
= 3 log 2 / 3 log 7
= 7 log 2
c. 9^(
3
log 7)
= 32 ^(3 log 7)
= 3^(2 .3 log 7)
= 3^(3 log 49)
= 49
Selasa, 15 September 2020
SOAL PERTIDAKSAMAAN EKSPONEN DAN SIFAT-SIFATNYA
1. Jika dan memenuhi , serta p bilangan rasional, maka p adalah
(SPMB 2002)
Pembahasan
Dilakukan penyederhanaan di dalam akar:
Akar dirubah menjadi pangkat:
Bentuk pecahan disederhanakan menjadi:
Maka
2. Nilai x yang memenuhi pertidaksamaan eksponen adalah:
Pembahasan
Sehingga,
Diperoleh,
dan
Untuk mendapat penyelesaiannya, ambil sembarang nilai x diantara rentang kemudian disubstitusikan kedalam bentuk . Misal ambil x = 1.
(tidak sesuai)
Karena tidak sesuai, maka area penyelesaian ada di luar rentang , sehingga didapat penyelesaiannya adalah
dan
3. Akar-akar persamaan adalah dan .
Jika , maka tentukan nilai
Pembahasan
Misalkan , maka
sehingga dan y2 = 1.
Disubstitusi dalam menjadi
Sehingga,
a. {x∣-1<x<2}
b. {x∣-2<x<1}
c. {x∣x<-1 atau x>2}
d. {x∣x<-2 atau x>1}
e. {x∣x<0 atau x>1}
Pembahasan:
Misal: maka:
(2p – 1) (p – 4) > 0
p = ½ dan p = 4
untuk p = ½, maka
untuk p = 4, maka , x = 2
HP = {x∣x<-1 atau x>2}
Jawaban: C
b. {p∣p<1 atau p>3}
c. {p∣ -2- √7< p< -2+ √7}
d. {p∣ 1< p< 3}
e. {p∣-3< p< -1}
Pembahasan:
-√7 < p + 2 < √7
-2 -√7 < p < -2 + √7
6. Nilai x yang memenuhi pertidaksamaan adalah ...
a. x ≥ -3/2
b. x ≥ -1
c. x ≥ 0
d. x ≥ 1/2
e. x ≥ 1
pembahasan:
2x + 2 ≥ -2x – 2
4x ≥ -4
x ≥ -1
jawaban: B
A. {x│x < −1, x ∈ R}
B. {x│x < −2, x ∈ R}
C. {x│x > 3, x ∈ R}
D. {x│x > 4, x ∈ R}
E. {x│x > 8, x ∈ R}
Pembahasan
Misalkan p = 2x sehingga 22x = p2.22x − 7 ∙ 2x > 8
p2 − 7p − 8 > 0
(p + 1)(p − 8) > 0
Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri −1 atau di sebelah kanan 8.
p < −1 atau p > 8
2x < −1 atau 2x > 8
Penyelesaian 2x < −1 tidak memenuhi karena hasil perpangkatan tidak mungkin negatif. Sehingga kita tinggal menyelesaikan 2x > 8.
2x > 8
2x > 23
x > 3
Jadi, himpunan penyelesaian pertidaksamaan eksponen tersebut adalah opsi (C).
A. x > −1 atau x > 2
B. x < −1 atau x < 2
C. x < 1 atau x > 2
D. x < −1 atau x > 2
E. x > −1 atau x < −2
PembahasanLangkah pertama, kita pecah bilangan berpangkat 32x+1 menjadi 32x ∙ 31.
32x+1 + 9 − 28 ∙ 3x > 0
32x ∙ 31 + 9 − 28 ∙ 3x > 0
Misalkan p = 3x kemudian kita urutkan sehingga menjadi:
3p2 − 28p + 9 > 0
(3p − 1)(p − 9) > 0
Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri 1/3 atau di sebelah kanan 9.
p < 1/3 atau p > 9
3x < 3−1 atau 3x > 32
x < −1 atau x > 2
Jadi, nilai x yang memenuhi pertidaksamaan eksponen di atas adalah opsi (D).
A. {x│x > 9, x ∈ R}
B. {x│x < −3, x ∈ R}
C. {x│x > 4, x ∈ R}
D. {x│x < −6, x ∈ R}
E. {x│x > 2, x ∈ R}
Pembahasan
Langkah pertama kita pindah ruas sehingga ruas kanan menjadi nol9x − 3x+1 − 54 > 0
Selanjutnya pangkat dari 3 kita pecah dengan rumus am+n = am ∙ an.
9x − 3x . 31 − 54 > 0
Misalkan p = 3x sehingga 9x = p2.
p2 − 3p − 54 > 0
(p + 6)(p − 9) > 0
Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri −6 atau di sebelah kanan 9.
p < −6 atau p > 9
3x < −6 atau 3x > 9
Penyelesaian 3x < −6 tidak memenuhi karena hasil perpangkatan tidak mungkin negatif. Sekarang kita lanjutkan untuk 3x > 9.
3x > 9
3x > 32
x > 2
Jadi, himpunan penyelesaian yang memenuhi pertidaksamaan eksponen di atas adalah opsi (E).
A. 1 < x < 2
B. 5 < x < 25
C. x < -1 atau x > 2
D. x < 1 atau x > 2
E. x < 5 atau x > 25
Pembahasan :
52x - 6.5x+1 + 125 > 0
(5x)2 - 6.5x.51 + 125 > 0
(5x)2 - 30(5x) + 125 > 0
Misalkan y = 5x, pertidaksamaan diatas menjadi
y2 - 30y + 125 > 0
Pembuat nol :
y2 - 30y + 125 = 0
(y - 5)(y - 25) = 0
y = 5 atau y = 25
Dengan uji garis bilangan diperoleh
y < 5 atau y > 25
Karena y = 5x, maka penyelesaiannya menjadi
5x < 5 atau 5x > 25
5x < 51 atau 5x > 52
x < 1 atau x > 2
Jawaban : D
A. {x / -2 ≤ x ≤ 10/3}
B. {x / -10/3 ≤ x ≤ 2}
C. {x / x ≤ -10/3 atau x ≥ 2}
D. {x / x ≤ -2 atau x ≥ 10/3}
E. {x / -10/3 ≤ x ≤ -2}
Pembahasan :
92x−4≥(127)x2−4(32)2x−4≥(3−3)x2−432(2x−4)≥3−3(x2−4)2(2x−4)≥−3(x2−4)4x−8≥−3x2+123x2+4x−20≥0
Pembuat nol :
3x2 + 4x - 20 = 0
(3x + 10)(x - 2) = 0
x = -10/3 atau x = 2
Dengan uji garis bilangan diperoleh
x ≤ -10/3 atau x ≥ 2
B. {x / x < -2, x ∈ R}
C. {x / x < 2, x ∈ R}
D. {x / x > 2, x ∈ R}
E. {x / x > 3, x ∈ R}
Pembahasan :
32x - 6.3x < 27
(3x)2 - 6(3x) - 27 < 0
Misalkan y = 3x, pertidaksamaan diatas menjadi
y2 - 6y - 27 < 0
Pembuat nol :
y2 - 6y - 27 = 0
(y + 3)(y - 9) = 0
y = -3 atau y = 9
Dengan uji garis bilangan diperoleh
-3 < y < 9
atau dapat pula ditulis
y > -3 dan y < 9
Karena y = 3x, maka
3x > -3 dan 3x < 9
3x > -3 dan 3x < 32
x ∈ R dan x < 2
Jadi, himpunan penyelesaiannya adalah
{x ∈ R dan x < 2} = {x < 2}
Jawaban : C
B. -3 ≤ x ≤ 1/25
C. x ≤ 2
D. x ≥ 2
E. x ≥ -2
Pembahasan :
5-2x+2 + 74 . 5-x - 3 ≥ 0
5-2x . 52 + 74 . 5-x - 3 ≥ 0
25(5-x)2 + 74(5-x) - 3 ≥ 0
Misalkan y = 5-x, pertidaksamaan diatas menjadi
25y2 + 74y - 3 ≥ 0
Pembuat nol :
25y2 + 74y - 3 = 0
(y + 3)(25y - 1) = 0
y = -3 atau y = 1/25
Dengan uji garis bilangan diperoleh :
y ≤ -3 atau y ≥ 1/25
Karena y = 5-x, maka
5-x ≤ -3 ⟶ tidak mempunyai penyelesaian
5-x ≥ 1/25 ⇔ 5-x ≥ 5-2 ⇔ -x ≥ -2 ⇔ x ≤ 2
Jadi, penyelesaiannya adalah x ≤ 2
Jawaban : C
PENILAIAN AKHIR SEMESTER GENAP
QUESTIONS 1 1. a=i-8j+5k b=3i+8j+2k C=-2i-4j+3k A+2b-3c = (1,-8, 5) + 2 (3,8,2) - 3 (-2,-4,3) = (1,-8,5) + (6,16,4) - (-6,-1...
-
suatu persamaan eksponen dalam peubah x adalah semua nilai x yang memenuhi persamaan eksponen tersebut atau dengan kata lain, nilai-nilai x ...
-
Eksponen adalah bentuk dari sebuah bilangan yang dikalikan dengan bilangan yang sama dan di ulang-ulang, atau lebih mudahnya kita bisa me...
-
Simetri adalah bangun geometri yang jika diterapkan tidak akan muncul suatu perubahan. Ada dua macam SIMETA pada bangun datar, yaitu SIMT ...