Misalkan a > 0 dan a ≠ 1.
Jika af(x) = ag(x) maka f(x) = g(x)
Misalkan a, b > 0 dan a, b ≠ 1.
Jika af(x) = bf(x) maka f(x) = 0
Misalkan a, b > 0 dan a, b ≠ 1.
Jika af(x) = bg(x) maka log af(x) = log bg(x)
Jika f(x)g(x) = 1 maka
(1) f(x) = 1
(2) f(x) = -1, dengan syarat g(x) genap
(3) g(x) = 0, dengan syarat f(x) ≠ 0
Jika f(x)h(x) = g(x)h(x) maka
(1) f(x) = g(x)
(2) f(x) = -g(x), dengan syarat h(x) genap
(3) h(x) = 0, dengan syarat f(x) ≠ 0 dan g(x) ≠ 0
Jika f(x)g(x) = f(x)h(x) maka
(1) g(x) = h(x)
(2) f(x) = 1
(3) f(x) = -1, g(x) dan h(x) keduanya genap/ganjil
(4) f(x) = 0, g(x) dan h(x) keduanya positif
Tanpa basa basi lagi, kita langsung saja masuk ke contoh-contohnya.
Contoh 1
Soal: Tentukan penyelesaian dari persamaan ekponensial berikut ini 22x-7 = 81-x
Jawab:
Pertama-tama yang perlu Gengs lakukan yaitu menyamakan basis pada kedua ruas [ruas kanan dan ruas kiri] seperti berikut:
22x-7 = 81-x
22x-7 = (23)1-x
22x-7 = 23-3x
Nahhhh karena basismya telah sama, maka dengan mudah kita dapat menentukan nilai x-nya seperti berikut ini.
2x - 7 = 3 - 3x
5x = 10
x = 2
Sehingga kita peroleh x = 2
Contoh 2
Soal: Carilah bentuk sederhana dari(a12b−3a−1b−32)23 adalah …
Jawab:
Dengan menggunakan sifat-sifat eksponen, maka :
Contoh 3
Soal: Tentukan nilai dari25−2722
Jawab:
25−2722=22(23−25)22
=23−25
= 8 - 32 = -24
Contoh 4
Soal: Tentukan nilai x yang memenuhi persamaan eksponensial berikut
3x+2+3x=10
Jawab:
3x+2+3x=10
3x(32+1)=10
3x(10)=10
3x=1
3x=30
x=0
Contoh 5
Soal: Hasil dari0,125−−−−−√3+132√5+(0,5)2 adalah…
Jawab:
Dengan menggunakan sifat-sifat eksponen dan bentuk akar, maka
Contoh 6
Soal: Tentukan nilai x dari persamaan35x−1–27x+3=0
Jawab:
35x−1–27x+3=0
35x−1=(33)x+3
35x−1=33x+9
5x-1 = 3x + 9
2x = 10
x = 5
Contoh 7
Soal: Tentukan penyelesaian dari 32x-2 = 5x-1
Jawab:
Kedua basis pada persamaan diatas berbeda dan tidak ada sifat-sifat perpangkatan yang dapat kita gunakan untuk menyamakan kedua basis tersebut. Namun, kedua pangkatnya bisa kita samakan menjadi sebagai berikut :
32x-2 = 5x-1
32(x-1) = 5x-1
9x-1 = 5x-1
Sehingga berdasarkan sifat 2, maka akan diperoleh sebagai berikut:
x - 1 = 0
x = 1
Dengan demikian nilai x yang kita peroleh yaitu 1.
Contoh 8
Soal: Jika3x−2y=181 dan 2x−y=16 , maka nilai x + y
Jawab:
Dengan menggunakan sifat-sifat persamaan eksponen, maka
3x−2y=181
3x−2y=134
3x−2y=3−4 ........................... pers 1
2x−y=16
2x−y=24
x - y = 4 ................................ pers 2
Dari pers 1 dan pers 2, diperoleh
x - 2y = -4
x - y = 4
___________ –
-y = -8
y = 8
Nilai y dapat kita subsitusikan ke pers 1 atau 2, maka
x - 2y = -4
y = 8
Jadi
x - 2(8) = -4
x = -4 + 16
x = 12
ATAU
x - y = 4
x - (8) = 4
x = 4 + 8
x = 12
Didapatkan nilai x = 12, dan nilai y = 8
Jadi, x + y = 12 + 8 = 20
Contoh 9
Jawab:
9 x²+x = 27 x²-1
3 2(x²+x) = 3 3(x²-1)
2 (x2+x) = 3 (x2-1)
2x2 + 2x = 3x2 – 3
x2 – 2x – 3 = 0
(x – 3) (x + 1) = 0
x = 3 atau x = -1
Jadi himpunan penyelesaiannya adalah { -1,3 }
Misalkan a, b > 0 dan a, b ≠ 1.
Jika af(x) = bg(x) maka log af(x) = log bg(x)
Jika f(x)g(x) = 1 maka
(1) f(x) = 1
(2) f(x) = -1, dengan syarat g(x) genap
(3) g(x) = 0, dengan syarat f(x) ≠ 0
Jika f(x)h(x) = g(x)h(x) maka
(1) f(x) = g(x)
(2) f(x) = -g(x), dengan syarat h(x) genap
(3) h(x) = 0, dengan syarat f(x) ≠ 0 dan g(x) ≠ 0
Jika f(x)g(x) = f(x)h(x) maka
(1) g(x) = h(x)
(2) f(x) = 1
(3) f(x) = -1, g(x) dan h(x) keduanya genap/ganjil
(4) f(x) = 0, g(x) dan h(x) keduanya positif
Tanpa basa basi lagi, kita langsung saja masuk ke contoh-contohnya.
Contoh 1
Soal: Tentukan penyelesaian dari persamaan ekponensial berikut ini 22x-7 = 81-x
Jawab:
Pertama-tama yang perlu Gengs lakukan yaitu menyamakan basis pada kedua ruas [ruas kanan dan ruas kiri] seperti berikut:
22x-7 = 81-x
22x-7 = (23)1-x
22x-7 = 23-3x
Nahhhh karena basismya telah sama, maka dengan mudah kita dapat menentukan nilai x-nya seperti berikut ini.
2x - 7 = 3 - 3x
5x = 10
x = 2
Sehingga kita peroleh x = 2
Contoh 2
Soal: Carilah bentuk sederhana dari
Jawab:
Dengan menggunakan sifat-sifat eksponen, maka :
Soal: Tentukan nilai dari
Jawab:
=
= 8 - 32 = -24
Contoh 4
Soal: Tentukan nilai x yang memenuhi persamaan eksponensial berikut
Jawab:
x=0
Contoh 5
Soal: Hasil dari
Jawab:
Dengan menggunakan sifat-sifat eksponen dan bentuk akar, maka
Contoh 6
Soal: Tentukan nilai x dari persamaan
Jawab:
5x-1 = 3x + 9
2x = 10
x = 5
Contoh 7
Soal: Tentukan penyelesaian dari 32x-2 = 5x-1
Jawab:
Kedua basis pada persamaan diatas berbeda dan tidak ada sifat-sifat perpangkatan yang dapat kita gunakan untuk menyamakan kedua basis tersebut. Namun, kedua pangkatnya bisa kita samakan menjadi sebagai berikut :
32x-2 = 5x-1
32(x-1) = 5x-1
9x-1 = 5x-1
Sehingga berdasarkan sifat 2, maka akan diperoleh sebagai berikut:
x - 1 = 0
x = 1
Dengan demikian nilai x yang kita peroleh yaitu 1.
Contoh 8
Soal: Jika
Jawab:
Dengan menggunakan sifat-sifat persamaan eksponen, maka
x - y = 4 ................................ pers 2
Dari pers 1 dan pers 2, diperoleh
x - 2y = -4
x - y = 4
___________ –
-y = -8
y = 8
Nilai y dapat kita subsitusikan ke pers 1 atau 2, maka
x - 2y = -4
y = 8
Jadi
x - 2(8) = -4
x = -4 + 16
x = 12
ATAU
x - y = 4
x - (8) = 4
x = 4 + 8
x = 12
Didapatkan nilai x = 12, dan nilai y = 8
Jadi, x + y = 12 + 8 = 20
Contoh 9
Soal: Tentukan himpunan penyelesaian dari :
9 x²+x = 27 x²-1Jawab:
9 x²+x = 27 x²-1
3 2(x²+x) = 3 3(x²-1)
2 (x2+x) = 3 (x2-1)
2x2 + 2x = 3x2 – 3
x2 – 2x – 3 = 0
(x – 3) (x + 1) = 0
x = 3 atau x = -1
Jadi himpunan penyelesaiannya adalah { -1,3 }
Contoh10
Soal: Tentukan nilai x yang memenuhi persamaan eksponensial berikut.
25 x+2 = (0,2) 1-x
Jawab
25 x+2 = (0,2) 1-x
52(x+2) = 5 -1(1-x)
2x + 4 = -1 + x
2x – x = -1 – 4
x = -5
Jadi nilai x yang diperoleh yaitu -5
Contoh 11
Soal: Jika4x−4x−1=6 maka (2x)x sama dengan ?
Jawab:
4x−4x−1=6
4x−1/4.4x=6
3/4.4x=6
4x=8
22x=23
2x = 3
x = 3/2
Sehingga,
(2x)x=(2.3/2)x=3x=33/2
Contoh 12
Soal: Diketahui a = 4 b = 2 dan c = 1/2. Tentukan nilai dari(a−1)2.b4/c−3
Jawab:
Soal: Tentukan nilai x yang memenuhi persamaan eksponensial berikut.
25 x+2 = (0,2) 1-x
Jawab
25 x+2 = (0,2) 1-x
52(x+2) = 5 -1(1-x)
2x + 4 = -1 + x
2x – x = -1 – 4
x = -5
Jadi nilai x yang diperoleh yaitu -5
Contoh 11
Soal: Jika
Jawab:
2x = 3
x = 3/2
Sehingga,
Contoh 12
Soal: Diketahui a = 4 b = 2 dan c = 1/2. Tentukan nilai dari
Jawab:
Contoh 13
Soal: Tentukan himpunan penyelesaian dari (x - 4)4x = (x - 4)1+3x
Jawab:
Untuk menjawab soal ini, Gengs perhatikan kembali sifat nomor 6.
Misalkan :
f(x) = x - 4,
g(x) = 4x dan
h(x) = 1 + 3x
Solusi 1: g(x) = h(x)
4x = 1 + 3x
x = 1
Solusi 2: f(x) = 1
x - 4 = 1
x = 5
Solusi 3: f(x) = -1, g(x) dan h(x) keduanya genap/ganjil.
x - 4 = -1
x = 3
Periksa : Untuk x = 3 maka
g(x) = 4(3) = 12
h(x) = 1 + 3(3) = 10
Karena keduanya genap, maka x = 3 memenuhi.
***Jika seandainya keduanya ganjil, maka x = 3 juga memenuhi. Namun, jika salah satu genap dan yang lain ganjil maka x = 3 tidak memenuhi.
Solusi 4: f(x) = 0, g(x) dan h(x) keduanya positif.
x - 4 = 0
x = 4
Periksa : Untuk x = 4 maka
g(x) = 4(4) = 16
h(x) = 1 + 3(4) = 13
Karena keduanya positif, maka x = 4 memenuhi.
***Jika seandainya salah satu atau keduanya bernilai ≤ 0, maka x = 4 tidak memenuhi.
Dengan demikian, himpunan penyelesaiannya adalah {1, 3, 4, 5}
Contoh 14
Soal: Akar-akar persamaan2.34x−20.32x+18=0 adalah x1 dan x2 . Nilai x1+x2 adalah
Jawab:
Dengan menggunakan sifat-sifat persamaan eksponen, maka:
Soal: Tentukan himpunan penyelesaian dari (x - 4)4x = (x - 4)1+3x
Jawab:
Untuk menjawab soal ini, Gengs perhatikan kembali sifat nomor 6.
Misalkan :
f(x) = x - 4,
g(x) = 4x dan
h(x) = 1 + 3x
Solusi 1: g(x) = h(x)
4x = 1 + 3x
x = 1
Solusi 2: f(x) = 1
x - 4 = 1
x = 5
Solusi 3: f(x) = -1, g(x) dan h(x) keduanya genap/ganjil.
x - 4 = -1
x = 3
Periksa : Untuk x = 3 maka
g(x) = 4(3) = 12
h(x) = 1 + 3(3) = 10
Karena keduanya genap, maka x = 3 memenuhi.
***Jika seandainya keduanya ganjil, maka x = 3 juga memenuhi. Namun, jika salah satu genap dan yang lain ganjil maka x = 3 tidak memenuhi.
Solusi 4: f(x) = 0, g(x) dan h(x) keduanya positif.
x - 4 = 0
x = 4
Periksa : Untuk x = 4 maka
g(x) = 4(4) = 16
h(x) = 1 + 3(4) = 13
Karena keduanya positif, maka x = 4 memenuhi.
***Jika seandainya salah satu atau keduanya bernilai ≤ 0, maka x = 4 tidak memenuhi.
Dengan demikian, himpunan penyelesaiannya adalah {1, 3, 4, 5}
Contoh 14
Soal: Akar-akar persamaan
Jawab:
Dengan menggunakan sifat-sifat persamaan eksponen, maka:
Contoh 15
Langkah selanjutnya yang perlu kita lakukan yaitu faktorkan persamaan kuadrat yang telah kita peroleh denga memisalkan 3x = a
9a2+8a−1=0
[9a-1][a+1] = 0
9a-1 = 0
9a = 1
a = 1/9
atau
a + 1 = 0
a = -1
kembali ke permisalan awal3x = a
3x=1/9 maka x = -2
3x=−1 [tidak memenuhi]
Sehingga nilai x yang memenuhi adalah -2
Contoh 16
Soal: Tentukan himpunan penyelesaian dari (x2 + 3x - 2)2x+3 = (x2 + 2x + 4)2x+3
Jawab:
Berdasarkan sifat 5, persamaan eksponen di atas akan mempunyai tiga kemungkinan solusi.
Solusi 1: Basis kiri sama dengan basis kanan
x2 + 3x - 2 = x2 + 2x + 4
3x - 2 = 2x + 4
x = 6
Solusi 2: Basis berlainan tanda dengan syarat pangkatnya genap
x2 + 3x - 2 = -(x2 + 2x + 4)
x2 + 3x - 2 = -x2 - 2x - 4
2x2 + 5x + 2 = 0
(2x + 1)(x + 2) = 0
x = -1/2 atau x = -2
Periksa:
Untuk x = -1/2 → (2x + 3) [bernilai genap]
Untuk x = -2 → (2x + 3) [bernilai ganjil]
Jadi, yang memenuhi adalah x = -1/2
Solusi 3: Pangkatnya sama dengan nol, dengan syarat kedua basisnya tidak sam dengan nol
2x + 3 = 0
x = -3/2
Periksa:
(x2 + 3x - 2) ≠ 0
(x2 + 2x + 4) ≠ 0
Karena keduanya ≠ 0, maka x = -3/2 [memenuhi]
Dengan demikian himpunan penyelesaiannya adalah {-3/2, -1/2, 6}
Jadi itulah tadi contoh-contoh soal mengenai persamaan eksponen.
[9a-1][a+1] = 0
9a-1 = 0
9a = 1
a = 1/9
atau
a + 1 = 0
a = -1
kembali ke permisalan awal
Sehingga nilai x yang memenuhi adalah -2
Contoh 16
Soal: Tentukan himpunan penyelesaian dari (x2 + 3x - 2)2x+3 = (x2 + 2x + 4)2x+3
Jawab:
Berdasarkan sifat 5, persamaan eksponen di atas akan mempunyai tiga kemungkinan solusi.
Solusi 1: Basis kiri sama dengan basis kanan
x2 + 3x - 2 = x2 + 2x + 4
3x - 2 = 2x + 4
x = 6
Solusi 2: Basis berlainan tanda dengan syarat pangkatnya genap
x2 + 3x - 2 = -(x2 + 2x + 4)
x2 + 3x - 2 = -x2 - 2x - 4
2x2 + 5x + 2 = 0
(2x + 1)(x + 2) = 0
x = -1/2 atau x = -2
Periksa:
Untuk x = -1/2 → (2x + 3) [bernilai genap]
Untuk x = -2 → (2x + 3) [bernilai ganjil]
Jadi, yang memenuhi adalah x = -1/2
Solusi 3: Pangkatnya sama dengan nol, dengan syarat kedua basisnya tidak sam dengan nol
2x + 3 = 0
x = -3/2
Periksa:
(x2 + 3x - 2) ≠ 0
(x2 + 2x + 4) ≠ 0
Karena keduanya ≠ 0, maka x = -3/2 [memenuhi]
Dengan demikian himpunan penyelesaiannya adalah {-3/2, -1/2, 6}
Jadi itulah tadi contoh-contoh soal mengenai persamaan eksponen.
sumber: https://www.google.com/search?q=soal+persamaan+eksponen+dan+sifat-sifatnya&oq=soal+persamaan+eksponen+dan+sifat-sifatnya&aqs=chrome..69i57j0l5.18124j0j7&sourceid=chrome&ie=UTF-8#
manyap jihan
BalasHapusaww keren bingits kak
BalasHapus