Selasa, 18 Agustus 2020

Soal Persamaan Eksponen Dan Sifat-Sifatnya

Namun sebelumnya akan saya berikan sifat-sifat yang ada pada persamaan eksponen.
Misalkan a > 0 dan a ≠ 1.
Jika af(x) = ag(x) maka f(x) = g(x)
Misalkan ab > 0 dan ab ≠ 1.
Jika af(x) = bf(x) maka  f(x) = 0

Misalkan ab > 0 dan ab ≠ 1.
Jika af(x) = bg(x) maka log af(x) = log bg(x)

Jika f(x)g(x) = 1 maka   

(1)  f(x) = 1 
(2)  f(x) = -1,  dengan syarat g(x) genap
(3)  g(x) = 0,  dengan syarat f(x) ≠ 0

Jika f(x)h(x) = g(x)h(x) maka 

(1)  f(x) = g(x)
 (2)  f(x) = -g(x),  dengan syarat h(x) genap
(3)  h(x) = 0,  dengan syarat f(x) ≠ 0 dan g(x) ≠ 0

Jika f(x)g(x) = f(x)h(x) maka 

(1)  g(x) = h(x)
(2)  f(x) = 1 
(3)  f(x) = -1,  g(x) dan h(x) keduanya genap/ganjil
(4)  f(x) = 0,  g(x) dan h(x) keduanya positif

Tanpa basa basi lagi, kita langsung saja masuk ke contoh-contohnya.

Contoh 1
Soal: Tentukan penyelesaian dari persamaan ekponensial berikut ini  22x-7 = 81-x
Jawab:
Pertama-tama yang perlu Gengs lakukan yaitu menyamakan basis pada kedua ruas [ruas kanan dan ruas kiri] seperti berikut:
22x-7 = 81-x
22x-7 = (23)1-x
22x-7 = 23-3x
Nahhhh karena basismya telah sama, maka dengan mudah kita dapat menentukan nilai x-nya seperti berikut ini.
2x - 7 = 3 - 3x
5x = 10
x = 2
Sehingga kita peroleh x = 2

Contoh 2
Soal: Carilah bentuk sederhana dari (a12b3a1b32)23 adalah …
Jawab:
Dengan menggunakan sifat-sifat eksponen, maka :
www.aheetmath.com

Contoh 3
Soal: Tentukan nilai dari 252722
Jawab:
252722=22(2325)22
                       =2325
                       = 8 - 32 = -24

Contoh 4
Soal: Tentukan nilai x yang memenuhi persamaan eksponensial berikut
3x+2+3x=10  
Jawab:
3x+2+3x=10
3x(32+1)=10
           3x(10)=10
                3x=1
                  3x=30
                       x=0

Contoh 5
Soal: Hasil dari 0,1253+1325+(0,5)2 adalah…
Jawab:
Dengan menggunakan sifat-sifat eksponen dan bentuk akar, maka







Contoh 6
Soal: Tentukan nilai x dari persamaan 35x127x+3=0
Jawab:
35x127x+3=0
35x1=(33)x+3
35x1=33x+9
5x-1 = 3x + 9
   2x = 10
     x = 5

Contoh 7
Soal: Tentukan penyelesaian dari 32x-2 = 5x-1
Jawab:
Kedua basis pada persamaan diatas berbeda dan tidak ada sifat-sifat perpangkatan yang dapat kita gunakan untuk menyamakan kedua basis tersebut. Namun, kedua pangkatnya bisa kita samakan menjadi sebagai berikut :
32x-2 = 5x-1
32(x-1) = 5x-1
9x-1 = 5x-1
Sehingga berdasarkan sifat 2, maka akan diperoleh sebagai berikut:
x - 1 = 0
     x = 1
Dengan demikian nilai x yang kita peroleh yaitu 1.

Contoh 8
Soal: Jika 3x2y=181 dan 2xy=16, maka nilai x + y
Jawab:
Dengan menggunakan sifat-sifat persamaan eksponen, maka
3x2y=181
3x2y=134
3x2y=34 ........................... pers 1
2xy=16
2xy=24
x - y = 4 ................................ pers 2
Dari pers 1 dan pers 2, diperoleh
x - 2y = -4
  x - y = 4
___________ –
-y = -8
  y = 8

Nilai y dapat kita subsitusikan ke pers 1 atau 2, maka
x - 2y = -4
       y = 8
Jadi
x - 2(8) = -4
          x = -4 + 16
          x = 12
ATAU
  x - y = 4
x - (8) = 4
        x = 4 + 8
        x = 12
Didapatkan nilai x = 12, dan nilai y = 8
Jadi, x + y = 12 + 8 = 20

Contoh 9
Soal: Tentukan himpunan penyelesaian dari :
x²+x = 27 x²-1
Jawab:
x²+x = 27 x²-1
2(x²+x) = 3 3(x²-1) 
2 (x2+x) = 3 (x2-1)
2x2 + 2x = 3x2 – 3
x2 – 2x – 3 = 0
(x – 3) (x + 1) = 0 
x = 3     atau   x = -1    
Jadi himpunan penyelesaiannya adalah { -1,3 }

Contoh10
Soal: Tentukan nilai x yang memenuhi persamaan eksponensial berikut.
25 x+2 = (0,2) 1-x
Jawab  
25 x+2 = (0,2) 1-x 
52(x+2) = 5 -1(1-x)
2x + 4 = -1 + x
2x – x = -1 – 4
x         = -5
Jadi nilai x yang diperoleh yaitu  -5

Contoh 11
Soal: Jika 4x4x1=6 maka (2x)x sama dengan ?
Jawab:
4x4x1=6
4x1/4.4x=6
3/4.4x=6
4x=8
22x=23
2x = 3
x = 3/2
Sehingga,
(2x)x=(2.3/2)x=3x=33/2

Contoh 12
Soal: Diketahui a = 4 b = 2 dan c = 1/2. Tentukan nilai dari (a1)2.b4/c3
Jawab:










Contoh 13
Soal: Tentukan himpunan penyelesaian dari (x - 4)4x = (x - 4)1+3x
Jawab:

Untuk menjawab soal ini, Gengs perhatikan kembali sifat nomor 6.
Misalkan :
f(x) = x - 4,
g(x) = 4x  dan
h(x) = 1 + 3x

Solusi 1: g(x) = h(x)
4x = 1 + 3x
x = 1 

Solusi 2: f(x) = 1
x - 4 = 1
x = 5 

Solusi 3: f(x) = -1,  g(x) dan h(x) keduanya genap/ganjil.
x - 4 = -1
x = 3

Periksa : Untuk x = 3 maka
g(x) = 4(3) = 12 
h(x) = 1 + 3(3) = 10 
Karena keduanya genap, maka x = 3 memenuhi.
***Jika seandainya keduanya ganjil, maka x = 3 juga memenuhi. Namun, jika salah satu genap dan yang lain ganjil maka x = 3 tidak memenuhi.

Solusi 4: f(x) = 0,  g(x) dan h(x) keduanya positif.
x - 4 = 0
x = 4 
Periksa : Untuk x = 4 maka
g(x) = 4(4) = 16
h(x) = 1 + 3(4) = 13 
Karena keduanya positif, maka x = 4 memenuhi.
***Jika seandainya salah satu atau keduanya bernilai ≤ 0, maka x = 4 tidak memenuhi.
Dengan demikian, himpunan penyelesaiannya adalah {1, 3, 4, 5}

Contoh 14
Soal: Akar-akar persamaan 2.34x20.32x+18=0 adalah x1 dan x2. Nilai x1+x2 adalah
Jawab:
Dengan menggunakan sifat-sifat persamaan eksponen, maka:














Contoh 15
Soal: Cari himpunan penyelesaian dari persamaan eksponen 32x+2+8.3x1=0
Jawab:







Langkah selanjutnya yang perlu kita lakukan yaitu faktorkan persamaan kuadrat yang telah kita peroleh denga memisalkan 3x = a
9a2+8a1=0
       [9a-1][a+1] = 0
9a-1 = 0
   9a = 1
     a = 1/9
atau
a + 1 = 0
      a = -1
kembali ke permisalan awal 3x  = a
3x=1/9 maka x = -2
3x=1 [tidak memenuhi]
Sehingga nilai x yang memenuhi adalah -2

Contoh 16
Soal: Tentukan himpunan penyelesaian dari (x2 + 3x - 2)2x+3 = (x2 + 2x + 4)2x+3
Jawab:
Berdasarkan sifat 5, persamaan eksponen di atas akan mempunyai tiga kemungkinan solusi.
Solusi 1: Basis kiri sama dengan basis kanan
x2 + 3x - 2 = x2 + 2x + 4
3x - 2 = 2x + 4
x = 6

Solusi 2: Basis berlainan tanda dengan syarat pangkatnya genap
x2 + 3x - 2 = -(x2 + 2x + 4)
x2 + 3x - 2 = -x2 - 2x - 4
2x2 + 5x + 2 = 0
(2x + 1)(x + 2) = 0
x = -1/2 atau x = -2

Periksa:
Untuk x = -1/2  →  (2x + 3) [bernilai genap]
Untuk x = -2  →  (2x + 3) [bernilai ganjil]

Jadi, yang memenuhi adalah x = -1/2

Solusi 3: Pangkatnya sama dengan nol, dengan syarat kedua basisnya tidak sam dengan nol
2x + 3 = 0
     x = -3/2
Periksa:
(x2 + 3x - 2) ≠ 0
(x2 + 2x + 4) ≠ 0

Karena keduanya ≠ 0, maka x = -3/2 [memenuhi]
Dengan demikian himpunan penyelesaiannya adalah {-3/2, -1/2, 6}

Jadi itulah tadi contoh-contoh soal mengenai persamaan eksponen.

sumber: https://www.google.com/search?q=soal+persamaan+eksponen+dan+sifat-sifatnya&oq=soal+persamaan+eksponen+dan+sifat-sifatnya&aqs=chrome..69i57j0l5.18124j0j7&sourceid=chrome&ie=UTF-8#

2 komentar:

PENILAIAN AKHIR SEMESTER GENAP

QUESTIONS 1  1. a=i-8j+5k b=3i+8j+2k C=-2i-4j+3k A+2b-3c = (1,-8, 5) + 2 (3,8,2) - 3 (-2,-4,3)                = (1,-8,5) + (6,16,4) - (-6,-1...